Forecasting creditworthiness in retail banking: a comparison of cascade correlation neural networks, CART and logistic regression scoring models
نویسندگان
چکیده
The preoccupation with modelling credit scoring systems including their relevance to forecasting and decision making in the financial sector has been with developed countries whilst developing countries have been largely neglected. The focus of our investigation is the Cameroonian commercial banking sector with implications for fellow members of the Banque des Etats de L‟Afrique Centrale (BEAC) family which apply the same system. We investigate their currently used approaches to assessing personal loans and we construct appropriate scoring models. Three statistical modelling scoring techniques are applied, namely Logistic Regression (LR), Classification and Regression Tree (CART) and Cascade Correlation Neural Network (CCNN). To compare various scoring models‟ performances we use Average Correct Classification (ACC) rates, error rates, ROC curve and GINI coefficient as evaluation criteria. The results demonstrate that a reduction in terms of forecasting power from 15.69% default cases under the current system, to 3.34% based on the best scoring model, namely CART can be achieved. The predictive capabilities of all three models are rated as at least very good using GINI coefficient; and rated excellent using the ROC curve for both CART and CCNN. It should be emphasised that in terms of prediction rate, CCNN is superior to the other techniques investigated in this paper. Also, a sensitivity analysis of the variables identifies borrower‟s account functioning, previous occupation, guarantees, car ownership, and loan purpose as key variables in the forecasting and decision making process which are at the heart of overall credit policy.
منابع مشابه
Predicting creditworthiness in retail banking with limited scoring data
The preoccupation with modelling credit scoring systems including their relevance to predicting and decision making in the financial sector has been with developed countries, whilst developing countries have been largely neglected. The focus of our investigation is on the Cameroonian banking sector with implications for fellow members of the Banque des Etats de L’Afrique Centrale (BEAC) family ...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملFactors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis
Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...
متن کاملAn Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes
In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...
متن کاملCredit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks
The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction...
متن کامل